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� Increasing evidence indicates that reactive oxygen species (ROS), consisting of super-
oxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but
rather may function as signaling molecules that promote health by preventing or delaying
a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are
generally accepted to cause cellular damage and to promote aging, low levels of these may
rather improve systemic defense mechanisms by inducing an adaptive response. This con-
cept has been named mitochondrial hormesis or mitohormesis. We here evaluate and
summarize more than 500 publications from current literature regarding such ROS-medi-
ated low-dose signaling events, including calorie restriction, hypoxia, temperature stress,
and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors,
AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culmi-
nate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance
and stress resistance. Additionally, consequences of interfering with such ROS signals by
pharmacological or natural compounds are being discussed, concluding that particularly
antioxidants are useless or even harmful.

1. INTRODUCTION

Mitochondrial metabolism and reactive oxygen species

Mitochondria are important cell organelles that are responsible not
only for the conversion of the bulk of nutritive energy, but also exert a
major role in aging processes and in the development of age-related dis-
eases. As an inevitable by-product of oxidative phosphorylation
(OxPhos), mitochondria generate over 90% of all intracellular reactive
oxygen species (ROS), with conversion of 0.15 – 5 % of total oxygen con-
sumed by resting cells (Halliwell and Gutteridge 2007, Chance et al. 1979,
Boveris and Chance 1973, St. Pierre et al. 2002). Hence, as main produc-
ers of energy and also potentially harmful ROS, mitochondria have a
major impact on physiological and pathophysiological processes within
the cell.
ROS formation to an extent that exceeds physiological levels and

hence causes putative damage is called oxidative stress (Sies 1985). Thus,
mitochondrial dysfunction implicating increased oxidative stress has
been proposed to be associated with a variety of diseases like diabetes,
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cancer and neurodegenerative disorders, including Alzheimer’s and
Parkinson’s disease (Wiederkehr and Wollheim 2006, Ristow 2006, Fukui
and Moraes 2008, Tatsuta and Langer 2008). Beyond that, impairment of
mitochondrial activity is supposed to be a major reason for aging (Tatsuta
and Langer 2008, Bratic and Larsson 2013, Trifunovic et al. 2004), where-
as the role of ROS in this regard is still under debate. On the one hand,
ROS have been implicated into cellular damage hence contributing to
the aging process. On the other hand, an increasing number of studies
linking improvement of mitochondrial capacity to increased lifespan and
health span extension. Evidence for this dates back to the 1990s, when
essential signaling roles for hydrogen peroxide were established (Barja
1993, Finkel 1998, Sena and Chandel 2012). Hence, it seems that a shift
towards oxidative metabolism could delay the onset of age-related dis-
eases and maybe aging itself.

Free radical theories of aging

Increased formation of mitochondrial ROS was postulated to be a
major cause of aging in 1956, when Denham Harman introduces his Free
Radical Theory of Aging (FRTA) (Harman 1956). According to this con-
cept, increased ROS formation causes an accumulation of damage in the
cell within age, resulting in age-related impairment of cellular functions
and ultimately death of the cell or the corresponding organism, respec-
tively. Respiratory enzymes, which utilize oxygen to generate readily avail-
able energy, were proposed to be the main generators of ROS. Due to the
fact that mitochondria are the main intracellular source of ROS, Harman
extended his initial FRTA theory to the Mitochondrial Free Radical Theory of
Aging (MFRTA) (Harman 1972). Over the last decades, significant
research efforts have been invested to prove the MFRTA, however gener-
ating inconsistent and conflicting results (Perez et al. 2009). Accordingly,
nowadays it seems to be established that enhancement of metabolic rate
does not necessarily result in concomitantly increased ROS formation
(Lapointe and Hekimi 2010) and that the relationship between ROS lev-
els and aging is not linear (Delaney et al. 2013, Johnson et al. 2001, Lee et
al. 2003, Kim and Sun 2007, de Castro et al. 2004). Nevertheless and sup-
porting the MFRTA, a bulk of studies in different organisms found that
reduced levels of oxidative stress result in extended lifespan (Harrington
and Harley 1988, Phillips et al. 1989, Orr and Sohal 1994, Parkes et al.
1998, Melov et al. 2000, Moskovitz et al. 2001, Bakaev and Lyudmila 2002,
Ruan et al. 2002, Ishii et al. 2004, Huang et al. 2006, Zou et al. 2007, Kim
et al. 2008, Quick et al. 2008, Dai et al. 2009, Shibamura et al. 2009) and
long-lived species seem to produce fewer ROS and accumulate less dam-
age than short-lived organisms (Gredilla et al. 2001, Sanz et al. 2010, Sanz
and Stefanatos 2008, Gruber et al. 2008).
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As a consequence, ROS-lowering interventions were widely proposed
to be a promising strategy to retard aging in humans. In this regard, nat-
ural or artificial substances that are able to scavenge ROS, so-called
antioxidants, were examined intensively. In contrast to the studies in
lower model organisms cited above, several prospective intervention tri-
als did not find any health-promoting effects of antioxidant supplemen-
tation. Unexpectedly, most interventional studies found a lack of effects
in humans (Greenberg et al. 1994, Liu et al. 1999, Rautalahti et al. 1999,
Virtamo et al. 2000, Various 2002, Sacco et al. 2003, Zureik et al. 2004,
Czernichow et al. 2005, Czernichow et al. 2006, Cook et al. 2007, Kataja-
Tuomola et al. 2008, Sesso et al. 2008, Katsiki and Manes 2009, Lin et al.
2009, Song et al. 2009), whereas others even suggested detrimental effects
on human health, for instance promotion of cancer growth or induction
of diseases with negative impact on human lifespan (Albanes et al. 1996,
Omenn et al. 1996, Vivekananthan et al. 2003, Lonn et al. 2005, Bjelakovic
et al. 2007, Ward et al. 2007, Lippman et al. 2009, Schipper 2004, DeNicola
et al. 2011, Abner et al. 2011). Consistently, several studies overexpressing
antioxidant enzymes in mice failed to exert positive effects on lifespan or
associated parameters (Jang et al. 2009, Muller et al. 2007, Perez et al.
2011). Accordingly, several long-lived species were found to have a rela-
tively lower expression of antioxidant genes than short-lived ones (Brown
and Stuart 2007, Lopez-Torres et al. 1993, Page et al. 2010, Page and Stuart
2012, Salway et al. 2011). In the fruit fly Drosophila melanogaster, increasing
levels of mitochondria-derived ROS were found during aging, but were
not altered through interventions that increase longevity (Cocheme et al.
2011). Finally, mice that are heterozygous for Mclk1, coding for a
ubiquinone synthesis enzyme, showed both increased mitochondrial ROS
production and extended lifespan (Liu et al. 2005).

Mitochondrial hormesis (Mitohormesis): Non-linear responses to increased
levels of ROS

These before-mentioned findings fundamentally questioned the
FRTA, eventually requiring a modernized view concerning the putative
roles of mitochondrial ROS (mtROS) generation. It has been repeatedly
shown in recent years that mtROS serve as important signaling molecules
mediating both cellular and systemic physiological changes, which has
been summarized elsewhere (Finkel 1998, Mittler et al. 2011, Sena and
Chandel 2012). Physiological targets for ROS are, for instance, thiol
groups on cysteine residues that become oxidized and thereby altering
functions of the enzymes in a signaling pathway (Finkel 2012, Rhee et al.
2000, Tonks 2005). However, given the fact that increased levels of oxida-
tive damages do accumulate during the aging process, one interesting
new point of view proposes that intrinsic aging is caused by an inadequate
response to endogenous ROS signals (Sohal and Orr 2012).
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If ROS serve as signaling molecules as outlined above, it appears like-
ly that ROS may also exert specific functions in promoting general
health, and specifically lifespan. Since ROS at high doses unquestionably
exert detrimental effects on cellular integrity, this insinuates that differ-
ent levels of ROS, i.e. comparably low versus high amounts, may exert
opposite effects on biological outcomes. In a more general sense, this
kind of biphasic or non-linear response to potentially harmful substances
was named “hormesis” (Southam and Ehrlich 1943). By today, the impact
of hormetic effects on aging has been repeatedly proposed, with a range
of stressors described (Calabrese and Baldwin 2002, Cypser and Johnson
2002, Rattan 2008, Mattson 2008, Lamming et al. 2004, Yanase et al. 1999).
On a hypothetical basis the term was specified to mitochondrial horme-
sis or mitohormesis in 2006 (Tapia 2006), which after its experimental
validation in parallel (Schulz et al. 2007) is repeatedly used in settings
where mtROS act as sublethal stressors promoting lifespan, whereas high-
er doses increase lethality (Figure 1).
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FIGURE 1. Mitochondrial Hormesis (Mitohormesis). While the Free Radical Theory of Aging suggests
a linear dose-response relationship between increasing amounts of ROS and oxidative stress on the
one hand, and mortality events on the other (red curve), the concept of mitohormesis indicates a
non-linear dose-response relationship where low doses of ROS exposure decrease mortality, while
higher doses promote mortality. 



Aim of the review

We here aim to summarize the wide body of published evidence that
refers to the biological relevance of mitohormesis mainly in regards to
regulation of stress resistance and longevity, but also affiliated areas of
interest. The majority of publications in this regard does not explicitly use
the term mitohormesis but rather refers to dose-dependent or non-linear,
mtROS-mediated signaling processes that hence reflect typical examples
of mitohormesis.

2. CALORIE RESTRICTION (CR)

Calorie restriction (CR), being defined as a 10 – 50% reduction of ad
libitum calorie uptake in the absence of malnutrition, is so far the most
convincing intervention to delay both aging and the occurrence of age-
related diseases in a variety of organisms, as reviewed elsewhere (Fontana
et al. 2010). The first observation that laboratory rats maintained on
dietary restriction not only showed an increased lifespan, but also seem
to be healthier at higher age, dates back to 1935 (McCay et al. 1935).
Since then, it has been frequently shown that CR is capable of extending
median and maximum lifespan in various species from yeast to mammals
(Lin et al. 2004, Lin et al. 2002, Schulz et al. 2007, Iwasaki et al. 1988),
insinuating an evolutionarily conserved mechanism, as review elsewhere
(Mair and Dillin 2008).
Nevertheless, it is still a matter of debate whether CR prolongs life

expectancy in humans too as it is shown that people with average body
mass tend to live longest (Berrington de Gonzalez et al. 2010), while CR
in humans rather causes severe reduction of body mass (Holloszy and
Fontana 2007). However, CR in humans clearly reduces diseases associat-
ed with aging, including cardiovascular diseases, cancer, and type 2 dia-
betes mellitus (DM type 2) (Takemori et al. 2011, He et al. 2012, Harvey
et al. 2012, Willette et al. 2012, Ryan et al. 2012) as well as associated risk
factors known to promote the before-mentioned diseases (Larson-Meyer
et al. 2006, Heilbronn et al. 2006, Lefevre et al. 2009). One study found
that CR reduces age-related mortality (which corresponds to only 54% of
deaths) in rhesus monkeys, whereas no influence on overall mortality was
reported (Colman et al. 2009). In contrast and unlike ad libitum fed con-
trol animals, monkeys on CR did not show any age-related impairment in
glucose homeostasis, suggesting a reduction of prevalence of metabolic
disorders like DM type 2. Another recent study on the same model organ-
ism found no changes in mortality following CR, whereas beneficial
effects on health and morbidity were clearly observed (Mattison et al.
2012). It should be noted that the two studies have used diets that dif-
fered strikingly, also in regards to carbohydrate content. Due to the fact
that both studies were not finished by the time this manuscript was pre-
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pared, future findings will have to show whether CR may affect overall
mortality in these monkeys. Nevertheless, there is suggestive evidence
that CR may also prolong life expectancy in primates and ultimately
humans (Fontana et al. 2004, Heilbronn et al. 2006, Ingram et al. 2006,
Weindruch 2006, Fontana and Klein 2007).
The concept of CR is based on an assumption postulated in the early

20th century, suggesting that there is an inverse correlation between the
maximum lifespan of an organism and its metabolized nutritive energy
(Rubner 1908). According to this, the Rate of Living hypothesis was for-
mulated soon after by Raymond Pearl, insinuating that an increase in
metabolic rate would decrease the lifespan of eukaryotes (Pearl 1928). A
possible explanation for this was subsequently proposed within the FRTA
by Harman, a hypothesis that became very popular and is frequently cited
in aging research up to now (Harman 1956), as it is an explanation for
CR which was hypothesized primarily to be a result of reduced oxidative
stress and less oxidative cellular damage due to reduced metabolic rate
(Sohal and Weindruch 1996).
However, more recent findings on the mechanistic basis of CR are in

conflict with the FRTA. For instance, it is unclear whether CR actually
does lead to a decrease in metabolic rate, i.e. oxygen consumption
and/or heat production. A positive correlation for decreased metabolic
rate and increase in longevity is found neither for metazoans like
Drosophila and C. elegans, nor is it for mice (Hulbert et al. 2004, Lin et al.
2002, Masoro et al. 1982, Speakman et al. 2002). Rather, it has been
reported that CR in C. elegans is associated with an increased metabolic
rate (Walker et al. 2005, Schulz et al. 2007) as it is for Drosophila (Magwere
et al. 2006, Piper et al. 2005b).
Since increased metabolic rates are necessarily linked to increased

mitochondrial metabolism, it appears likely that these lifespan-extending
processes may precipitate into increased production of ROS as an
inevitable by-product of mitochondrial metabolism, as shown e.g. for glu-
cose restriction (Schulz et al. 2007) and discussed in more detail below,
reflecting a CR-associated prime example of mitohormesis.

3. MITOHORMETIC MECHANISMS OF ADAPTIVE RESPONSES

Notably, it was repeatedly reported that CR is capable of inducing
stress defense mechanisms, particularly those which are involved in the
detoxification of ROS, such as radical-scavenging enzymes and phase I
and II biotransformation response enzymes, reflecting a number of puta-
tive mitohormetic responses (Koizumi et al. 1987, Semsei et al. 1989, Rao
et al. 1990, Pieri et al. 1992, Youngman et al. 1992, Xia et al. 1995, Masoro
1998, Barros et al. 2004, Mahlke et al. 2011, Qiu et al. 2010, Rippe et al.
2010, Sreekumar et al. 2002, Park et al. 2012, Schulz et al. 2007, Zarse et al.
2012, Schmeisser et al. 2013b).
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The independent observations of increased mtROS levels on the one
hand and the induction of stress defense on the other, notably both in
states of CR, raised the possibility that an initial induction of mtROS
induce stress defense mechanisms culminating in secondarily decreased
mtROS levels, as experimentally shown recently in a time-resolved man-
ner (Zarse et al. 2012): In states of glucose restriction due to a constitutive
genetic defect in the insulin/IGF-1 receptor DAF-2, a global decrease of
mtROS levels in the steady-state was found. However, when analyzing an
acute disruption of the same genetic pathway, a transient increase of
mtROS was observed that secondarily induced defense mechanisms, ulti-
mately reducing ROS levels in the steady state (Figure 2A). Blocking the
initial ROS signal accordingly abrogated the induction of stress defense,
as well as the steady-state reduction of ROS levels (Figure 2B). This indi-
cates that the mitohormetic ROS signal is typically transient, and is
reduced or even abolished in the steady-state due to an adaptive up-reg-
ulation of antioxidant enzymes and more globally stress defense. In other
words, transiently increased ROS levels act to induce a vaccination-like
response within the individual cell to lead to reduced ROS levels and bet-
ter stress defense in the steady state (Figure 3).
This subsequent decrease in ROS due to an adaptive increase of

detoxifying mechanisms has often been misinterpreted as being the pri-
mary result of CR, which as outlined above is not the case. Rather, a clear
causal relationship between primarily enhanced ROS formation and acti-
vation of ROS defense mechanism under conditions of CR was described
(Agarwal et al. 2005), which manifests the hypothesis that CR is an essen-
tial trigger of mitohormetic mechanisms as shown thereafter (Schulz et al.
2007). Moreover, carbonyl concentrations reflecting oxidative protein
damage were found to be increased in the brains of mice shortly after ini-
tiation of CR, whereas steady-state concentrations were significantly lower
than those of control group (Dubey et al. 1996). Furthermore, levels of
F2-isoprostane, reflecting oxidized lipids, were found to be decreased in
obese woman under modest calorie restriction after 5 days of interven-
tion (Buchowski et al. 2012). According to this, adaptive response mech-
anisms seem to be likely the reason for the beneficial effects initiated by
CR, which is also supported by more recent research (Schulz et al. 2007,
Sharma et al. 2010, Zuin et al. 2010, Rattan and Demirovic 2010, Mesquita
et al. 2010), also in a time-resolved manner (Zarse et al. 2012). In rodents
that are exposed to CR for instance, an induction of antioxidant defense
capacities has been frequently shown (Koizumi et al. 1987, Semsei et al.
1989, Rao et al. 1990, Pieri et al. 1992, Youngman et al. 1992, Xia et al.
1995, Masoro 1998, Barros et al. 2004, Mahlke et al. 2011, Qiu et al. 2010,
Rippe et al. 2010, Sreekumar et al. 2002). Additionally, glucose restriction
in yeast not only promotes lifespan but also decreases ROS levels
although respiration was increased (Barros et al. 2004). In conflict with
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these findings, subsequent studies using the same models and interven-
tions rather reported an increase in ROS production paralleled by
enhanced respiration and elevated antioxidant enzyme activity (Schulz et
al. 2007, Sharma et al. 2010, Zuin et al. 2010, Agarwal et al. 2005, Kharade
et al. 2005, Piper et al. 2006). This suggests a relationship between
increased respiration, ROS generation and the upregulation of ROS
defense mechanisms, which in the end mediates longevity. Furthermore,
lifespan-extending mutations in C. elegans are commonly associated with
increased stress resistance and often also with increased metabolic activi-
ty (Lithgow et al. 1995, Vanfleteren and De Vreese 1995, Honda and
Honda 1999, Murphy et al. 2003, Houthoofd et al. 2005, Dong et al. 2007).
As mentioned before, CR is able to delay the onset of a broad range

of age-related diseases such as cancer, DM type 2, nephropathy, cataracts,
hyperlipidemia, and hypertension (Fishbein 1991, Weindruch and
Walford 1988). Therefore it seems possible, that the lifespan-extending
effect of CR is linked to promotion of mean lifespan due to prevention of
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FIGURE 2. Lifespan-promoting ROS signaling can occur transiently and hence requires time-
resolved quantification. A) Disruption of the insulin/IGF-1 receptor, named DAF-2, in C. elegans
extends lifespan. The constitutive daf-2 mutant exhibits reduced ROS levels. This has led to the con-
clusion that impairing DAF-2 primarily causes reduced ROS levels. However, as recently published
(Zarse et al. 2012), the opposite is the case: When studying the acute effects of an RNAi-mediated daf-
2 knockdown, a transient increase in ROS production was observed (“acute response”). As shown in
the publication (Zarse et al. 2012), this ROS signal induces various endogenous ROS defense mech-
anisms that ultimately reduce ROS levels. This leads to a persistent reduction of ROS levels in daf-2
RNAi-treated worms in the steady state. This also exemplifies that quantifying ROS at an inappropri-
ate time point may lead to opposing results: ROS determined during the acute response against RNAi
would indicate increased levels, while ROS determined three days later during the steady-state would
indicate reduced levels. B) Exogenously added antioxidants prevent the acute induction of a ROS sig-
nal (Zarse et al. 2012). The lack of this ROS signal leads to a complete lack of the original adaptive
response shown in panel A. This causes higher steady-state ROS levels than in the absence of exoge-
nous antioxidants which only can be explained in the framework of mitohormesis, while the linear
dose-response would consider this phenomenon as paradoxical. 



life-threatening disorders that reduce longevity. However, additional
effects of CR on molecular processes improve cellular functions and
therefore improve health-span per se have been observed, for instance the
below mentioned activation of NF-E2-Related Factor 2 (NRF2) (Koizumi
et al. 1987, Semsei et al. 1989, Rao et al. 1990, Pieri et al. 1992, Youngman
et al. 1992, Xia et al. 1995, Masoro 1998, Barros et al. 2004, Mahlke et al.
2011, Qiu et al. 2010, Rippe et al. 2010, Sreekumar et al. 2002, Bishop and
Guarente 2007). Another crucial role in CR and aging is attributed to the
sirtuins, a conserved family of NAD+-dependent deacetylases as reviewed
elsewhere (Baur and Sinclair 2006, Canto and Auwerx 2009) (see also
chapter “Sirtuin signaling”).
An important factor regarding the effects of CR could also be thiore-

doxin, as it is shown to be essential for the lifespan extension in C. elegans
under dietary deprivation and knockouts of eat-2, a genetic surrogate of
nematodal CR (Fierro-Gonzalez et al. 2011). The oxidoreductase thiore-
doxin is not only involved in antioxidant response and redox regulation,
but also acts as electron donor for metabolic enzymes and prevents aggre-
gation of cytosolic proteins in the cell (Lillig and Holmgren 2007, Berndt
et al. 2008). Thioredoxin gene expression is increased through NRF2
binding at the antioxidants responsive elements (AREs) and NRF2 is
shown to be activated by ROS (Kim et al. 2001, Papaiahgari et al. 2006).
The activation of the transcription factor NRF2 from the leucine zip-

per family is indeed a crucial pathway to mediate mitohormesis. NRF2
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FIGURE 3. Transiently increased ROS levels cause a vaccination-like adaptive response that promotes
endogenous ROS defense capacity. The figure exemplifies the organismal stress response to low-level
and/or short-term ROS exposure in comparison to the long-standing vaccination process, where
inactive or impaired microbes exert an organismal immune response leading to a long-lasting
defense capacity against future infections. 



binds to the DNA via AREs, which coordinate a stress response to ROS by
boosting the expression of antioxidant proteins and phase I and II detox-
ification enzymes (Rushmore et al. 1991). Under unstressed conditions,
NRF2 is sequestered in the cytoplasm by its specific repressor Kelch-like
ECH-Associated Protein 1 (KEAP1), an actin-binding protein, which also
targets NRF2 for proteasomal degradation (Itoh et al. 1999). KEAP-1 has
redox-sensitive cysteine residues, with which it sensors oxidants and elec-
trophiles, leading to abrogation of the NRF2/KEAP1 complex (Zhang
2006, Itoh et al. 2004). NRF2 then translocates into the nucleus, where it
executes its transcriptional regulating functions (Jaiswal 2004) (Figure 4).
While the putative functional orthologue of KEAP1 in C. elegans, XREB
(Hasegawa and Miwa 2010), has not been examined further so far, the
worm NRF2 orthologue SKN-1 similarly responds to oxidative stress by
upregulating antioxidant and phase II genes which in the end promotes
stress resistance and lifespan extension (An and Blackwell 2003, Bishop
and Guarente 2007, Tullet et al. 2008), as it is shown for various other
species (Sykiotis and Bohmann 2008, Motohashi and Yamamoto 2004,
Leiser and Miller 2010, Lewis et al. 2010).
Other transcription factors which are essential for lifespan extension

due to various interventions are members of the Forkhead transcription
factors (FOX) as well as heat shock factor 1 (HSF-1). FOXOs for example
activate a number of target genes involved in cellular stress response and
it has been shown, that mitohormetic upregulation of superoxide dismu-
tase and catalase following oxidative stress is FOXO dependent (Kops et
al. 2002, Nemoto and Finkel 2002, Brunet et al. 2004), whereas FOXAs
are important mediators of development and facilitate the response to
CR (Friedman and Kaestner 2006, Panowski et al. 2007). HSF-1 regulates
the transcription of heat shock genes that encode proteins (HSPs) in
response to heat and other stress, which is linked to protection against
diseases and increased lifespan in model organisms (Akerfelt et al. 2010,
Anckar and Sistonen 2011). HSPs are also linked to hormetic responses
(Cypser and Johnson 2002). Other mechanisms specifically related to the
stressors described in the chapters below will be mentioned at the appro-
priate position within this review (Figure 4).

4. REDUCTION OF SPECIFIC MACRONUTRIENTS

Macronutrients are carbohydrates, protein and fat (triacylglycerides),
which consist of a few different monosaccharides (importantly including
glucose), amino acids, and fatty acids, respectively. Metabolism of these
macronutrients provides the majority of energy in form of ATP required
by an organism. ATP generation out of fatty acids and most amino acids
depends on mitochondrial OxPhos and therefore presence and con-
sumption of oxygen. However, only glucose can be metabolized to gener-
ate ATP independently of the mitochondria and oxygen, hence without
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increasing ROS production. Nevertheless, the generation of ATP via
OxPhos is considerably more efficient than anaerobic ATP production
from glucose or specific amino acids: One mole of glucose metabolized
via mitochondrial OxPhos provides 30 moles of ATP, compared to 4
moles of ATP due to exclusively glycolytic breakdown. This implies that
restricting glucose may induce OxPhos and mitochondrial metabolism
more efficiently than globally restricting calorie uptake.
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FIGURE 4. Overview on how ROS transcriptionally influence stress resistance and lifespan. High lev-
els cause damage resulting in death of the cell and eventually the corresponding organism, whereas
low levels are capable of activating transcription factors that mediate adaptive stress response culmi-
nating in increased lifespan. 



On one hand, only a few studies have investigated whether it is possi-
ble to mimic the CR mediated effect on lifespan by reducing only select-
ed macronutrients, so the evidence available is limited. On the other
hand, some studies point out that it might be not the amount of calories
affecting health span, but rather the reduction of specific nutrients, as
reviewed elsewhere (Fanson et al. 2009, Mair et al. 2005, Piper et al.
2005a).
Studies of fat restriction in invertebrates are lacking, while a restric-

tion of lipids without overall CR in mice does not affect their lifespan
(Iwasaki et al. 1988). Feeding a low-carbohydrate/high-fat diet to mice
reduced lifespan slightly, at least in comparison to a high-carbohy-
drate/low-fat diet (Keipert et al. 2011). However, it is likely that fat restric-
tion has less potential to delay the onset of metabolic disorders than car-
bohydrate restriction (Ryan et al. 2007, Volek et al. 2009).
In mice, it has been shown that a reduced nutritional protein content

extent lifespan (Stoltzner 1977, Leto et al. 1976, Fernandes et al. 1976) as
it was shown for casein restriction in Drosophila (Min and Tatar 2006).
Studies examining the restriction of the essential amino acid and glu-
tathione precursor methionine found it not only to be lifespan extend-
ing. Increasing mitochondrial biogenesis and function, energy expendi-
ture, stress resistance, aerobic capacity, insulin sensitivity, glutathione
(GSH) and expression of glutathione-S-transferase (GST) as well as a
decrease of oxidative stress and cell damage due to adaptive changes in
methionine and GSH metabolism were also observed (Zimmerman et al.
2003, Miller et al. 2005, Perrone et al. 2010, Richie et al. 1994, Malloy et al.
2006, Sanz et al. 2006, Perrone et al. 2012, Tsai et al. 2010, Caro et al.
2008). Interestingly, co-treatment with an antioxidant, N-acetylcysteine,
blocks some of the health-promoting effects of methionine restriction,
accentuating a critical role for ROS with mitohormetic adaption process-
es in this regard (Elshorbagy et al. 2012, Sanchez-Roman et al. 2012).
As mentioned above, glucose (besides a few amino acids) is the only

macronutrient that can be metabolized and generate ATP without pro-
ducing ROS. In support of the mitohormesis concept, it is documented
that glucose restriction initiates health-promoting and lifespan extending
effects in rodents and various lower organisms, for instance in Drosophila
(Mair et al. 2005) and yeast (Lin et al. 2002). In the latter, studies showed
that lifespan extension depends on enhanced respiration and sirtuin acti-
vation, which is still a matter of heated debate (Lin et al. 2000, Kaeberlein
et al. 2004, Agarwal et al. 2005, Guarente and Picard 2005, Smith et al.
2007, Roux et al. 2009). However, also sirtuin-independent pathways have
been discussed (Barros et al. 2004, Roux et al. 2009).
To achieve depletion specifically of glucose metabolism in eukaryotic

model organisms such as rodents or C. elegans and hence, to mimic a keto-
genic diet (i.e. a very low carbohydrate content) and recapitulate meta-
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bolic hallmarks of CR in rodents, the glycolytic inhibitor 2-deoxy-glucose
(DOG) is frequently used (Wick et al. 1957, Garriga-Canut et al. 2006,
Lane et al. 1998, Ingram et al. 2004). DOG was found to be lifespan
extending in C. elegans (Schulz et al. 2007), whereas and unexpectedly,
increased mortality in rats was reported following chronic ingestion of
DOG (Minor et al. 2010). It should be noted that shuttle mechanism for
lactate and alanine may explain differential outcomes of glucose depri-
vation in metazoans and rodents, which however remains to be evaluated.
Similar as reported in yeast for media-based glucose restriction (Lin

et al. 2002), DOG not only extends lifespan in C. elegans, but also increas-
es respiration. However and unlike in S. cerevisiae, in C. elegans the effect
seems to be independent of sirtuins. The authors suggested that the
underlying mechanisms that lead to increased life expectancy are
dependent on the AMP-dependent kinase (AMPK). AMPK acts as a high-
ly conserved key regulator of energy metabolism within a cell, since func-
tionally similar orthologues were found in lower species like flies and
worms (Hardie et al. 2006, Apfeld et al. 2004, Greer et al. 2007a, Pan and
Hardie 2002). AMPK is activated by metabolic stress like cellular lack of
energy, resulting in upregulation of processes that produce energy, such
as mitochondrial biogenesis. This leads to a compensation of the energy
deficit and likely to additional health-promoting effects (Hardie et al.
2006).
Another approach to reduce glucose content within the cell is the

impairment of GLUT-4 glucose transporters. Mice with disruption of
GLUT-4 in both muscle and adipose tissue show fasting hyperglycemia,
glucose intolerance, increased fatty acid turnover, and utilization.
However, lifespan was not affected (Kotani et al. 2004). Strikingly, over-
expression of GLUT-4 leading to an increase of cellular glucose does also
not affect lifespan, whereas enhanced glucose abundance decreased lifes-
pan significantly in C. elegans (McCarter et al. 2007, Lee et al. 2009b,
Schlotterer et al. 2009, Schulz et al. 2007).
In humans, several approaches of varying macronutrients in the diet

have been established, especially to lose weight in states of obesity. In this
regard, low fat/high carbohydrate diets seem to be as efficient as low car-
bohydrate/high protein diets. Meta-analyses have shown that reducing
carbohydrates may additionally reduce the risk of cardiovascular diseases
(Nordmann et al. 2006, Hession et al. 2009, Volek et al. 2009, Wang et al.
2002). Furthermore, the reduction of several inflammation markers in
overweight men and women with atherogenic dyslipidemia was reported
(Forsythe et al. 2008). It was also shown that a ketogenic diet was capable
to lower blood glucose levels in obese diabetic patients more effectively
than overall CR (Hussain et al. 2012). In contrast, a Swedish study in over
43.000 middle-aged women found a significant increase in cardiovascular
diseases following a ketogenic diet (Lagiou et al. 2012). The authors sug-
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gested that the protein source might play an important role and could
contribute to this unexpected outcome. Interestingly, it was shown that a
short-term low-carbohydrate/high fat intake may increase postprandial
plasma glucose, suggesting a decrease in first-phase insulin secretion after
the diet has started. However, other studies detect decreased glucose plas-
ma levels on the long run, which could be due to adaptive mechanisms
(Nobels et al. 1989, Boden et al. 2005).

5. CALORIE RESTRICTION MIMETICS (CRM)

CRMs are defined as pharmaceutical or naturally occurring com-
pounds that may mimic the metabolic state of CR. Ideally these com-
pounds would allow the organisms to eat normally, i.e. ad libitum, while
the metabolic state would reflect reduced caloric uptake. The best stud-
ied compound in this regards, DOG has been introduced above.
However, due to increased mortality in rats following chronic ingestion of
DOG (Minor et al. 2010) this compound meanwhile appears of question-
able usefulness. While beyond the immediate scope of this review, it
should be noted that DOG as well as CR have been repeatedly shown to
exert remarkable neuro-protective effects as reviewed elsewhere
(Arumugam et al. 2006).
The phytochemical resveratrol is found to be CR mimetic as it poten-

tially slows aging and certainly delays age-related diseases by activating sir-
tuins and also mitohormetic responses (Wood et al. 2004, Baur et al. 2006,
Rubiolo et al. 2008) also based on a concept named xenohormesis
(Howitz and Sinclair 2008). This is possibly linked to the fact that resver-
atrol may induce mtROS formation (Zini et al. 1999). Interestingly, genet-
ic disruption of cellular mechanisms that target degradation of xenobi-
otics has been shown to result in lifespan extension in multiple species,
suggesting adaptive response processes (Curran and Ruvkun 2007, Smith
et al. 2008, Melo and Ruvkun 2012).
More specifically and focusing exclusively on mtROS formation, a

recent study in C. elegans found that chemical inhibition of complex I of
the mitochondrial electron transport chain (ETC) also mimics CR includ-
ing increased physical activity and stress resistance, as well as extended
lifespan. Interestingly, it was further shown that these complex I
inhibitors extend lifespan independent of sirtuins and AMPK, but solely
need a transient ROS increase to activate p38 MAP kinase and neuronal
NRF2, suggesting that CR extends lifespan by inducing ROS formation
(Schmeisser et al. 2013b). Consistently, C. elegans with genetic impairment
of complex I, III, and IV are also long-lived (Dillin et al. 2002, Zuryn et al.
2010, Rea et al. 2007). In mice, inhibition of complex IV leads also to lifes-
pan extension as well as elevated fat utilization, increased insulin sensi-
tivity, and increased mitochondrial biogenesis (Deepa et al. 2012). Also,
juglone, a known ROS generator and herbicide, has been reported to
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increase lifespan in low concentrations due to enhanced oxidative stress
response (Heidler et al. 2010).
In this regard it is interesting to note that a significant number of

pharmaceutically effective compounds, including phytochemicals like
resveratrol (Zini et al. 1999), sulforaphane (Singh et al. 2005), niacin
(Fukushima 2005), and berberine (Turner et al. 2008), as well as anti-
diabetic drugs like metformin (El-Mir et al. 2000) and PPARγ-activating
thiazolidinediones (Brunmair et al. 2004b, Nadanaciva et al. 2007), and
lastly cholesterol-lowering HMG-CoA-synthase inhibitors (“statins”)
(Nadanaciva et al. 2007) and PPARα-activating fibrates (Brunmair et al.
2004a, Nadanaciva et al. 2007), have been found to inhibit mitochondri-
al complex I of the ETC. Since inhibition of complex I generates a mito-
chondrial ROS signal, these independent findings insinuate that this
group of compounds exerts pleitropic effects, however sharing a com-
mon denominator by acting as potential CRMs which however needs fur-
ther investigation.

6. IMPAIRED INSULIN/IGF-1 SIGNALING (IIS)

Mammalian insulin and IGF-1 (insulin-like growth factor 1) are pep-
tide hormones produced in beta-cells of the pancreas and the liver,
respectively. Insulin is a key regulator of glucose metabolism, especially
involved in the regulation of cellular glucose uptake, fat metabolism, and
food uptake. IGF-1 is produced following growth hormone (GH, a.k.a.
somatotropin) mediated stimulation in the liver, and mediates childhood
growth and anabolic effects in adults. Furthermore, most of the direct
receptor-mediated effects of GH, i.e. IGF-1-independent effects, counter-
act insulin action. Insulin, IGF-1, and GH bind to different specific recep-
tors to affect cellular functions. With a significantly lower affinity, insulin
can activate the IFG-1 receptor, and vice versa.
Mice with impairment of GH or IGF-1 function and signaling show

dwarfism and prolonged lifespan, somewhat resembling CR conditions
(Quarrie and Riabowol 2004, Brown-Borg et al. 1996). Artificially increas-
ing GH levels abrogates the lifespan extension and leads to elevated body
size (Pendergrass et al. 1993, Steger et al. 1993). Furthermore, impair-
ment of the neuronal IGF-1 receptor or heterozygous global disruption
of this receptor increases murine lifespan and may be responsible for pre-
vention of neurodegeneration and proteotoxicity (Holzenberger et al.
2003, Kappeler et al. 2008). Conversely, long-term IGF-1 exposure leads to
decreased mitochrondrial function and cell viability in human fibroblasts
(Bitto et al. 2010).
Impairment of the insulin receptor in humans is linked to insulin

resistance, a state which is defined as an inadequate reduction of intra-
cellular response to extracellular insulin stimulus (Kahn 1994). One
main function of the insulin receptor activation due to extracellular
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insulin is the translocation of glucose transporter GLUT-4 and hence, glu-
cose uptake in the cell. Accordingly, the outcome of insulin resistance is
reduced glucose availability within the cell, which is associated with DM
type 2 (Biddinger and Kahn 2006). This disease is linked to decreased
lifespan also due to a number of secondary complications, including car-
diovascular disease and an increased incidence of cancers (Kannel and
McGee 1979, Franco et al. 2007, Coughlin et al. 2004).
Since in mice a global disruption of the insulin receptor knockout

leads to embryonic lethality, muscle-specific knock-out mice were estab-
lished to study the role of insulin receptor signaling. Noteworthy, muscle-
tissue is the most relevant tissue in regards to glucose metabolism.
Interestingly, those mice showed elevated fat mass, serum triacylglyc-
erides and free fatty acids, but they neither experienced hyperglycemia
nor the development of diabetes (Brüning et al. 1998). Moreover, they
displayed enhanced glucose uptake in muscle cells in response to exer-
cise like wild type mice do (Wojtaszewski et al. 1999). Lifespan data on
those mice are not available, but mice with an adipose tissue-specific
knockout have an increased mean and maximum lifespan (Blüher et al.
2003). Furthermore, mice with a global knockout in the insulin receptor
substrate 1 (IRS-1) demonstrate increased resistance to several age-relat-
ed pathologies and are long-lived, as are mice with neuronal knockout of
IRS-2 and heterozygous global IRS-2 knockouts (Selman et al. 2008, Page
et al. 2013, Taguchi et al. 2007). In addition, there are hints that specific
mutations in the insulin receptor might also be associated with longevity
in humans (van Heemst et al. 2005, Pawlikowska et al. 2009).
Other than mammals, invertebrates like C. elegans and Drosophila do

not have distinct receptors for IGF-1 and insulin, but rather share a com-
mon receptor. Impaired insulin/IGF-1 signaling (but not its complete dis-
ruption) in invertebrates strikingly extends lifespan (Kimura et al. 1997,
Clancy et al. 2001, Tatar et al. 2001).

C. elegans that carry a mutation within daf-2, the worm orthologue of
the insulin/IGF-1 receptor, have a lifespan that is twice as long as in wild
type worms (Kenyon et al. 1993). Recent studies have shown that the mito-
chondrial energy production is altered by impairment of DAF-2. Such
mutants did not display the typical age-dependent decrease in mitochon-
dria protein and bioenergetics competence, but a higher membrane
potential and an increase in ROS, which is interestingly not associated
with more, but less damage to mitochondrial DNA and protein (Brys et al.
2010, Zarse et al. 2012). The inhibition of IIS leads to lifespan extension
due to changes in gene expression mediated by the FOXO transcription
factor DAF-16 (Kenyon 2010). Reduction of IIS followed by lifespan
extension and promotion of stress resistance in the worm not only
requires DAF-16, it activates also SKN-1 in parallel, which facilitates the
above mentioned beneficial adaptive response (Tullet et al. 2008); the
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same is true for HSF-1 (Kenyon 2005, Chiang et al. 2012). Also, mito-
chondrial L-proline catabolism plays an important role in that regard
since it is upregulated by impaired DAF-2 signaling, which lead to a tran-
sient increase in ROS production mediating adaptive response processes
to extend lifespan, proving the link between impaired IIS and mito-
hormesis (Zarse et al. 2012).
Assuming that impairment of the insulin/IGF-1 receptor reduces glu-

cose uptake one could expect that the same lifespan extending mecha-
nisms act here as they occur in regard to glucose restriction or overall CR
(see above). In fact, there are several studies proposing shared processes
and pathways involved in both interventions (Yechoor et al. 2004, Brooks
et al. 2007, Katic et al. 2007, Russell and Kahn 2007, Westbrook et al. 2009,
Zarse et al. 2012), while others propose independent mechanisms (Greer
et al. 2007a, Lakowski and Hekimi 1998, Bartke et al. 2007, Houthoofd et
al. 2003, Min et al. 2008, Bonkowski et al. 2009, Brown-Borg et al. 2002,
Clancy et al. 2002).

7. AMP-DEPENDENT KINASE (AMPK) SIGNALING

AMPK acts as a sensor of available nutrients and hence energy that is
regulated by the cellular AMP/ATP ratio and upstream kinases (Hardie
et al. 2003). Whenever an energy deficit occurs and concurrently the
AMP/ATP ratio rises, AMPK activates catabolic and represses anabolic
processes. In other words, being activated by stress that inhibits ATP gen-
eration or increases ATP consumption, like glucose starvation or muscle
contraction, AMPK inhibits energy consuming pathways and induces
ATP-generating processes (Hardie et al. 2003, Salt et al. 1998, Winder and
Hardie 1996).
AMPK exists as heterotrimeric complex consisting of a catalytic α-sub-

unit and the regulatory β- and γ-subunits (Kemp et al. 2003). Activation of
AMPK requires specific phosphorylation events by upstream kinases such
as the serine/threonine protein kinase LKB1 within the catalytic domain
of the α-subunit (Woods et al. 2003). Widely expressed, AMPK regulates
food uptake in response to nutrient signals and hormones (Minokoshi et
al. 2004) and is an important initiator of mitochondrial biogenesis (Zong
et al. 2002, Winder et al. 2000), glucose and fatty acid uptake (Barnes et al.
2002, Habets et al. 2009), as well as β-oxidation (Merrill et al. 1997). In C.
elegans, AMPK overexpression extends lifespan and is required for the
lifespan extension due to impaired insulin/IGF-1 signaling (Apfeld et al.
2004). However, the role of AMPK in CR is less clearly established. The
kinase appears to be necessary to mediate lifespan extension due to CR
when food limitation starts in middle age employing a pathway that
requires DAF-16/FOXO (Greer et al. 2007a). The direct activation of
FOXO by AMPK has also been described in mammals (Greer et al.
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2007b), linking it to oxidative stress response and therefore potentially
mitohormesis.
Accordingly, AMPK is activated by DOG and involved in the induction

of mitochondrial metabolism and hence the mitohormetic response
(Schulz et al. 2007). Another example for an AMPK-activating substance
is metformin, an antidiabetic drug and inhibitor of the mitochondrial
complex I (El-Mir et al. 2000), which was found to be lifespan-extending
due to AMPK-activation in C. elegans and mice (Onken and Driscoll 2010,
Anisimov et al. 2008). Moreover, metformin was shown to promote adap-
tive processes, which are also involved in CR and oxidative stress response
like activation of NRF2/SKN-1, culminating in increased life expectancy
(Onken and Driscoll 2010). As described earlier, the CR mimetic resver-
atrol slows aging and delays age-related diseases by activating, besides sir-
tuins, also AMPK, again linking it to mitohormetic responses (Zini et al.
1999, Baur et al. 2006). It has been reported that many AMPK activators,
including resveratrol and metformin, act by inhibiting mitochondrial
function (Hawley et al. 2010). As a consequence of impaired mitochon-
drial function, the AMP/ATP ratio rises, leading to AMPK activation fol-
lowed by increased mitochondrial biogenesis, respiration, β-oxidation,
and finally increased ROS production (Schulz et al. 2007, Hardie 2011).
It has moreover been proposed that ROS themselves are also capable of
activating AMPK (Zmijewski et al. 2010, Alexander et al. 2010) and due to
this, by acting up- and downstream of AMPK, the stress response may be
further amplified. Interestingly, hypoxia has been shown to activate
AMPK not by changing the AMP/ATP ratio, but rather by increased ROS
production, since the activation is inhibited by antioxidants (Emerling et
al. 2009).
However, recent findings suggest that mitochondrial ROS production

may be more relevant than AMPK activation in regards to lifespan exten-
sion: consistent with the nuo-6 mutation in C. elegans (Yang and Hekimi
2010), inhibiting complex I of the respiratory chain by rotenone and
other chemicals generates a ROS signal that extends lifespan in the
absence of AMPK, sirtuins, or both (Schmeisser et al. 2013b). This indi-
cates that ROS formation alone, i.e. in the absence of energy sensors, is
still capable of promoting longevity. Consistently, it was shown that nema-
todes lacking AMPK live shorter and die prematurely in the dauer stage
since their triglyceride stores are exhausted (Narbonne and Roy 2009,
Xie and Roy 2012). The study of Xie and colleagues pointed out an
important role for ROS in replacing essential AMPK functions: An
increase in hydrogen peroxide activated the transcription factor hypoxia-
inducible factor 1 (HIF-1; see also chapter “Hypoxia”), which is capable
of stimulating key enzymes involved in the biosynthesis of fatty acids, lead-
ing to an increased survival of the dauer larvae (Xie and Roy 2012).
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Hence, AMPK not only acts as regulator of metabolism, but also may
play an important role in ROS signaling and adaptive response processes,
which highlights the universal character of mitohormesis within cellular
metabolism, whereas ROS signals still promote longevity even in the
absence of AMPK.

8. TOR SIGNALING

The so-called “target of rapamycin” (TOR) pathway is known to be
another major regulator of life expectancy by sensing nutrient and envi-
ronmental signals (Pan et al. 2012). The mammalian TOR (mTOR) is a
serine/threonine protein kinase and a member of the phosphatidylinos-
itol 3-kinase-related kinase protein family which consists of two function-
ally distinct multi-protein complexes known as TOR complex 1 (TORC1)
and TORC2 (Brunn et al. 1997). Each complex has an accessory protein;
for TORC1 it is named regulatory-associated protein of mTOR (RAP-
TOR), for TORC2 rapamycin-insensitive companion of mTOR (RIC-
TOR) (Hara et al. 2002, Laplante and Sabatini 2012). The major sensor
of cellular inputs like nutrients, hormones, energy, and oxidative stress is
TORC1, while TORC2 executes regulatory functions concerning cell sur-
vival and cytoskeletal polarity (Laplante and Sabatini 2012). TOR signal-
ing has been shown to be regulated by AMPK, suggesting that both nutri-
ent-sensing pathways are key regulators of mitochondrial metabolism
(Gwinn et al. 2008).
Impairment of the TOR pathway is shown to be lifespan-extending in

various organisms (Kaeberlein et al. 2005, Powers et al. 2006, Jia et al. 2004,
Kapahi et al. 2004). The immunosuppressive and antifungal drug
rapamycin acts as inhibitor of the TOR pathway as it inhibits TORC1 and
is known to extend median and maximum lifespan of C. elegans and mice
(Harrison et al. 2009, Robida-Stubbs et al. 2012). Notably, rapamycin not
only extends lifespan, but also induces insulin resistance and impaired
glucose metabolism (Lamming et al. 2012), again consistent with cellular
energy deprivation and subsequent induction of mitohormesis. Similarly,
mTOR signaling has been linked to oxidative nutrient metabolism in
rodents (Sengupta et al. 2010).
Consistent with this, lifespan extension in yeast due to impaired TOR

signaling is promoted by inducing expression of proteins from the respi-
ratory complexes, mitochondrial ETC activity and overall mitochondrial
metabolism (Pan and Shadel 2009, Powers et al. 2006, Bonawitz et al.
2007, Pan et al. 2011). In agreement with this, the influence of TOR on
mitochondrial biogenesis and turnover is also found in mammals in a
strongly tissue-dependent manner. In murine skeleton muscle tissue and
cells for instance, rapamycin decreases expression of mitochondrial
genes resulting in decreased oxygen consumption (Cunningham et al.
2007), whereas in fatty tissue opposite effects have been observed.
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Adipocyte-specific disruption of RAPTOR is linked to higher rates of
mitochondrial uncoupling followed by enhanced energy expenditure,
which protects the mice from gaining weight (Polak et al. 2008). Higher
respiration rates and energy expenditure are also linked to increased
expression of genes involved in OxPhos and beta-oxidation, especially in
older mice (Katic et al. 2007).
There are several protein families like 4E-BP, ATG, and S6K, which

modulate mitochondrial biogenesis downstream in the TOR signaling
pathway. Consistently, the translational regulator 4E-BP is shown to have
strong influence on the expression of OxPhos genes. In Drosophila, CR
alters mRNA profiles via TORC1 in a 4E-BP dependent manner (Zid et al.
2009). Furthermore, TOR downstream acting proteins are not only
involved in mitochondrial biogenesis, but also mitochondrial quality:
ATG-5 mediates the degrading of dysfunctional mitochondria by
autophagy (Twig et al. 2008), recently called “mitophagy” (Pua and He
2009). Notably, autophagy has also an important role in response to cel-
lular stress, including starvation and pathogen infection, as well as in IIS
mediated lifespan regulation (Kroemer et al. 2010, Levine et al. 2011,
Toth et al. 2008, Hansen et al. 2008).
Due to the fact that TOR signaling plays a crucial role in mitochon-

drial biogenesis and turnover it is consequently involved in regulation of
mtROS levels. For example, mouse mitochondria from skeletal muscle
cells with impaired ATG-7 exhibit increased production of ROS (Wu et al.
2009b). This negative correlation between TOR signaling and ROS is also
observed in yeast, where both tor-1 knock-out and rapamycin treatment
caused increased levels of superoxide due to enhanced mitochondrial
biogenesis, strikingly coupled with less oxidative damage within the cell
(Pan et al. 2011). This research manifests that ROS stimulation due to
TOR acts also as mitohormetic stimulus and that mitohormesis is also in
this regard the key mediator of lifespan extension (Pan 2011). Impaired
TOR signaling through either genetically inhibited TORC1 or the usage
of rapamycin is also known to activate SKN-1 and DAF-16 in C. elegans,
mediating increased stress resistance and longevity (Robida-Stubbs et al.
2012).
It is assumed that TOR is another key mediator of CR since it has

been shown that yeast and Drosophila carrying a deletion in the TOR gene
do not benefit of CR in regards to lifespan extension (Kaeberlein et al.
2005, Kapahi et al. 2004). To evidence this hypothesis and point out
whether the TOR pathway is involved in CR benefits, further research is
strongly needed.

9. SIRTUIN SIGNALING

Sirtuins are NAD+-dependent deacetylases that catalyze the removal
of acetyl groups from lysine residues of specifically histones and other
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proteins. They modulate cell-protective mechanisms such as oxidative stress
defense, DNA repair, protein folding, energy utilization, and autophagy
(Haigis and Sinclair 2010). The first identified member of this protein fam-
ily was named silent information regulator 2 (SIR2) (Sinclair et al. 1997,
Kaeberlein et al. 1999), giving rise to the term “sirtuins”. By today, seven
mammalian orthologues have been found, named SIRT1 to SIRT7 (Blander
and Guarente 2004), whereas SIRT1 and SIRT3 are the closest orthologues
to SIR2 (Merksamer et al. 2013). Sirtuins are linked to longevity, since over-
expression has been shown to extend lifespan in yeast (Kaeberlein et al.
1999) as well as in worms (Tissenbaum and Guarente 2001, Viswanathan
and Guarente 2011, Mouchiroud et al. 2013, Ludewig et al. 2013, Schmeisser
et al. 2013a) and flies (Rogina and Helfand 2004, Bauer et al. 2009).
However, others could not confirm the results in C. elegans and Drosophila
(Burnett et al. 2011), whereas one study found sirtuin overexpression only
in the fat body of relevance for longevity (Banerjee et al. 2012). Sirtuins were
found to be necessary to mediate lifespan extension due to CR (Lin et al.
2000, Guarente and Picard 2005, Boily et al. 2008), whereas others found no
such connection (Kaeberlein et al. 2004, Smith et al. 2007, Schulz et al. 2007).
In addition, a recent publication pointed out an important role for p53
modulating SIRT1 during CR, as reviewed elsewhere (Tucci 2012).
However, the role of sirtuins in oxidative stress and mitohormetic

responses has been implicitly discussed also in this regard (Lin et al.
2000), supported by the observations, that sir2 overexpression rescues the
short lifespan phenotype due to hydrogen peroxide treatment in yeast
(Oberdoerffer et al. 2008) and that SIRT3 is necessary to mitigate oxida-
tive stress during CR (Someya et al. 2010, Qiu et al. 2010). There is evi-
dence that the mammalian SIRT1 is involved in mediating oxidative stress
response, as it directly deacetylates several FOX members (Brunet et al.
2004, Motta et al. 2004, van der Horst et al. 2004). In contracting muscle
cells SIRT1 mediates the protection against oxidative stress via enhanced
expression of SOD-2 (Pardo et al. 2011). Correspondingly, SIRT2 activates
FOXO3a, which promotes resistance to hydrogen peroxide (Wang et al.
2007). Moreover, SIRT1 has been also shown to activate peroxisome-pro-
liferator-activated receptor (PPAR) gamma co-activator-1 alpha (PGC-1α)
(Rodgers et al. 2005), a transcriptional co-activator that promotes mito-
chondrial biogenesis and expression of antioxidant genes including
calalase, SOD, and glutathione peroxidase (St. Pierre et al. 2006).
Furthermore, SIRT1 suppresses the inducible nitric oxide synthase
(iNOS) and thus may decrease cellular ROS levels (Lee et al. 2009a). The
catalytic activity of SOD-2 is dependent of the mitochondrial SIRT3,
which is also capable of enhancing SOD-2 activity (Qiu et al. 2010).
Accordingly, genetic impairment of SIRT3 in mice leads to higher ROS
levels, genomic instability, and susceptibility to cancer (Kim et al. 2010),
establishing SIRT3 as anticarcinogenic protein by improving stress
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response, which is supported also by more recent research (Bell et al.
2011, Finley et al. 2011). Consistently, SIRT6 has been shown to promote
DNA repair in response to oxidative stress (Mao et al. 2011). Genetic
impairment of SIRT6 results in genetic instability and premature aging
(Mostoslavsky et al. 2006), whereas overexpression promotes lifespan
extension, at least in male mice (Kanfi et al. 2012). Finally, SIRT7 medi-
ates oxidative stress response as well, since cardiomyocytes of SIRT7
knockout mice are more sensitive to hydrogen peroxide treatment
(Vakhrusheva et al. 2008, Calabrese et al. 2007).
From a traditional viewpoint, these findings support the notion that

sirtuins promote health and lifespan, at least in parts, via increased resist-
ance towards ROS (Webster et al. 2012) and particularly mitohormetic
response processes (Merksamer et al. 2013). As outlined in more detail
elsewhere (Merksamer et al. 2013), physiological stressors including CR
may decrease the activity of antioxidant enzymes like SOD by acetylation
processes resulting in hyperacetylation (Hirschey et al. 2010, Hirschey et
al. 2011a, Hirschey et al. 2011b, Ozden et al. 2011). The following increase
in ROS would activate defense mechanisms against oxidative stress, result-
ing in lower ROS levels in the steady state. Notably, such stresses have
been also shown to increase SIRT3 expression, suggesting subsequently
increased deacetylation of SOD and other mitochondrial proteins to
counteract chronically increased ROS generation (Hirschey et al. 2010,
Merksamer et al. 2013).
Very recently, an alternate mechanism linking sirtuin signaling to

ROS-mediated lifespan extension has emerged (Schmeisser et al. 2013a):
Sirtuins require NAD+ as a cofactor, and accordingly produce nicoti-
namide. This product becomes methylated to 1-methylnicotinamide,
which itself serves as a substrate for an aldehyde oxidase to produce
hydrogen peroxide. The latter acts as a ROS signal to execute sirtuin
effects, since disruption of either the methylase or the oxidase fully pre-
vents sirtuin-mediated lifespan extension (Schmeisser et al. 2013a), also
implying that sirtuin-mediated deacetylation processes may be of limited
relevance regarding lifespan regulation.

10. HYPOXIA

Hypoxia is an environmental state that is characterized by decreased
environmental availability of oxygen, which typically leads to reduced
mitochondrial respiration rates and a variety of changes on the molecu-
lar level (Semenza 2012), notably including increased mtROS production
(Kulisz et al. 2002). The master regulator of hypoxia-mediated transcrip-
tional changes is HIF-1, a highly conserved transcription factor that pro-
motes survival under hypoxic stress (Shen and Powell-Coffman 2003,
Semenza 2012). Under normal oxygen conditions, the mammalian HIF-
1α subunit is hydroxylated and targeted for proteasomal degradation by
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the von Hippel-Lindau tumor suppressor protein (VHL) (Kim and Kaelin
2003). This signaling pathway seems to be highly conserved, since C. ele-
gans hif-1 and vhl-1 genes encode homologs of HIF-1α subunit and VHL
(Shen et al. 2005). However, it was shown that low oxygen atmosphere
and decreased respiration is capable of increasing lifespan of C. elegans
(Adachi et al. 1998), probably via stabilization of HIF-1 (Lee et al. 2010,
Mehta et al. 2009, Zhang et al. 2009). This activation of the hypoxic sig-
naling pathway was found to promote lifespan independently of CR or
impaired IIS (Kaeberlein and Kapahi 2009, Mehta et al. 2009) as it is
shown that CR due to deprivation of bacteria and genetically induced
through mutation in eat-2 increases lifespan in hif-1 knockout nematodes,
and impairment of DAF-2 is also able to promote longevity in those ani-
mals (Mehta et al. 2009). Notably, it was reported that loss of HIF-1 caus-
es longevity as well (Zhang et al. 2009, Chen et al. 2009). In one study,
DAF-16 seems to be essential for lifespan extension, indicating a mecha-
nism similar to reduced IIS (Zhang et al. 2009), whereas others found no
such connection, possibly insinuating that HIF-1 acts as a negative regu-
lator of longevity in a pathway upstream of the endoplasmic reticulum
(ER) stress response and downstream of CR and TOR signaling (Chen et
al. 2009).
The unquestionable influences of HIF-1 on aging have initiated sev-

eral competing hypotheses: One explanation could be that HIF-1 down-
regulates mitochondrial activity (Papandreou et al. 2006, Semenza 2011),
as this is shown to be lifespan extending through RNAi-mediated knock-
down of several mitochondrial proteins (Tormos and Chandel 2010, Rea
et al. 2007, Dillin et al. 2002). Alternatively, HIF-1 could act in regards to
stress response, like NRF2 or FOXO, especially since it is shown that HIF-
1 and DAF-16 share various target genes (McElwee et al. 2004). In mam-
mals, there are also links to TOR signaling and ER unfolded protein
response (UPR) with mTOR signaling being reduced by hypoxia and
HIF-1 translation being dependent on TOR (Stein et al. 1998, Wouters
and Koritzinsky 2008), whereas both hypoxia and TOR are known to acti-
vate UPR (Romero-Ramirez et al. 2004).
Interestingly, mitochondrial-derived ROS during hypoxia lead to HIF-

1 stabilization in cultured cells (Chandel et al. 1998), as well as activation
of c-Jun N-terminal kinase 1 (JNK1), p53, and NF-κB (Chandel et al.
2000a, Chandel et al. 2000b). Moreover, in C. elegans, knockdown of genes
encoding respiratory chain components and mutations in such, like clk-1
and isp-1, lead not only to decreased respiration rates, but also to a mild
increase in ROS formation, which is responsible for HIF-1 stabilization
and longevity of the nematodes (Lee et al. 2010, Yang et al. 2009).
Increased ROS levels under hypoxic conditions in C. elegans (Miller et al.
2011, Miller and Roth 2007) as well as in cultured cells (Guzy and
Schumacker 2006) occur in a HIF-1 dependent manner. A recent study in
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C. elegans found also an important role of DAF-16 in this regard, since it
is delocalized to the nucleus and necessary to extend lifespan under
hypoxic conditions (Leiser et al. 2013). However, in this study, lifespan
extension did not require SIR-2.1, AAK-2, SKN-1, or CEP-1, the worms’
orthologues of sirtuins, AMPK, NRF2 and p53, respectively. On the other
hand, roles for the sirtuins in HIF-1 deacetylation, AAK-2 in adaption to
anoxia, and CEP-1 acting downstream of HIF-1 have been described ear-
lier (Dioum et al. 2009, Zhong et al. 2010, Lim et al. 2010, Leiser and
Kaeberlein 2010, Larue and Padilla 2011, Sendoel et al. 2010). As men-
tioned above, a mild increase in oxidative stress leads to stabilization of
HIF-1 followed by increased survival of C. elegans AAK-2/AMPK mutants
due to HIF-1-dependent activation of genes involved in fatty acid biosyn-
thesis (Xie and Roy 2012). This metabolic adjustment pointed out an
important role for HIF-1 and ROS in compensating AMPK functions.
Nevertheless, studies that investigated the influence of hypoxia on

mammalian aging are rare. This is not only because the mechanisms
according to hypoxia in mammals are much more complex than in lower
organisms like C. elegans, but also due to HIF-1α is involved in tumor
growth and cancer development, notably also by altering glucose metab-
olism (Semenza 2012, Semenza et al. 1994). Discovered by its ability to
increase erythropoetin production, HIF-1α was associated with the VHL
hereditary cancer syndrome, a heterozygous disease characterized by
development of various malign tumors in the kidneys, retina, and the cen-
tral nervous system with an increase in HIF-1α being a negative predictor
in metastatic tumors (Wang et al. 1995, Kaelin 2002, Semenza 2010).
However and to our best knowledge, the first evidence that links HIF-

1 to longevity and aging per se only dates back to 2009 (Mehta et al. 2009),
so future research will properly establish the role of oxygen availability in
the aging process and bring hypoxic mechanisms and connections to
other pathways to light.

11. TEMPERATURE STRESS

As early as in 1908 it was hypothesized that body temperature may be
linked or even determine life expectancy (Loeb 1908). A few years later,
the hypothesis was experimentally supported by showing that lowering
temperature extends lifespan of poikilothermic Drosophila (Loeb and
Northrop 1916). Subsequently, benefits from exposure to lowered tem-
perature regarding lifespan have been shown in other organisms like C.
elegans or fish (Klass 1977, Liu and Walford 1966) and notably also in
homoeothermic (warm-blooded) animals like rats and mice (Holloszy
and Smith 1986, Conti et al. 2006). On the other hand, increasing ambi-
ent temperature or mild heat stress are also linked to increased lifespan
in various organisms (Shama et al. 1998, Wu et al. 2009a). As mentioned
above, HSPs are major regulators of response to heat stress in almost all

Mitochondrial Hormesis and Lifespan

311



organisms investigated ranging from bacteria to mammals (Lindquist and
Craig 1988, Fargnoli et al. 1990, Udelsman et al. 1993, Lithgow et al. 1995,
Rea et al. 2005). HSPs consist of a large number of proteins, often being
classified according to their molecular weight: HSP40, HSP60, HSP70,
HSP90, HSP110 (with 40, 60, 70, 90, and 110 kilo-daltons in size, respec-
tively) and the small HSPs represent the majority of HSPs (Li and
Srivastava 2004). Some HSPs are also known as chaperones, playing cru-
cial roles in the UPR to prevent polypeptides from aggregating into non-
functional structures (Calderwood et al. 2009, Jazwinski 2005, Parikh et al.
1987), which has also been reported to play a role in lifespan regulation
(Calfon et al. 2002, Henis-Korenblit et al. 2010, Yoneda et al. 2004).
Transcriptionally regulated by HSF-1, HSPs have been unquestionably
linked to hormetic processes (Akerfelt et al. 2010, Cypser and Johnson
2002). For instance, increased expression of HSP-70 family members fol-
lowing activation of HSF-1 due to a variety of stressors leads to protection
against the latter, notably including ROS (Westerheide and Morimoto
2005, Raynes et al. 2012). Conversely, HSF-1 depletion shortens lifespan
in C. elegans, as overexpression increases longevity and is required for the
lifespan extension due to impaired insulin signaling (Hsu et al. 2003).
The same study found that DAF-16 is necessary for extending lifespan in
hsf-1 overexpressing worms, suggesting that both transcription factors
might synergistically act to exert their beneficial effects (Hsu et al. 2003)
(Figure 4). Hormetic heat stress is linked to improved mitochondrial
function (Shama et al. 1998), which is required for ROS defense (Grant
et al. 1997). Notably, long-lived C. elegans daf-2 mutants are resistant to
thermal and oxidative stress and display increased expression of various
HSPs and antioxidant and drug-metabolizing enzymes (McElwee et al.
2007, Lithgow and Walker 2002).
A mechanism for the observed increased lifespan at low temperatures

was recently suggested in a study using C. elegans, pointing out an impor-
tant role for a member of the transient receptor potential (TRP) family
of cationic channels, TRPA-1 (Xiao et al. 2013). TRPA-1 alters its perme-
ability to Ca2+, Na+, and K+ when activated by temperatures around 17°C
or lower (Clapham 2003, Story et al. 2003). Worms that lack TRPA-1 have
a shorter lifespan when exposed to cold in comparison to wild type ani-
mals, whereas overexpression of trpa-1 leads to increased lifespan at 15°C
and 20°C, but not under warm (25°C) conditions. These effects were
dependent on a calcium influx, which activates the calcium-sensitive pro-
tein kinase C (PKC) and the serine/threonine-protein kinase 1 (SGK-1).
Interestingly, DAF-16/FOXO has been shown to be necessary to promote
longevity in this regard. The TRPA-1 pathway induces nuclear activity of
DAF-16, surprisingly without stimulating its nuclear translocation. The
well-known fact that calcium influx increases ROS generation in mito-
chondria, as reviewed elsewhere (Brookes et al. 2004, Csordas and
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Hajnoczky 2009), insinuates that these ROS act as signal molecules to
activate DAF-16 and promote longevity in this regard. Another study
reported that hypothermia causes not only calcium influx into mito-
chondria, but also leads to a redox imbalance caused by an increase in
ROS concentration (Brinkkoetter et al. 2008). Thus, mitohormetic
processes could be also responsible for the lifespan extension following
exposure to cold temperatures.

12. PHYSICAL ACTIVITY

Physical inactivity promotes the onset of a variety of diseases like obe-
sity, cardiovascular disease, DM type 2, and cancer. Consistently, regular
physical activity unquestionably exerts beneficial or preventive effects on
the above mentioned diseases, and additionally delays depressive symp-
toms, neurodegeneration (including Alzheimer’s disease), and general
aging (Warburton et al. 2006, James et al. 1984, Hu et al. 2001, Brown et al.
2012, Lanza et al. 2008, Manini et al. 2006, Powers et al. 2011). Exercise is
not only linked to enhanced mitochondrial biogenesis and oxidative
metabolism, but also to increased generation of mtROS (Powers and
Jackson 2008, Chevion et al. 2003, Davies et al. 1982, Alessio and Goldfarb
1988, Alessio et al. 1988). Thus, and because of its obvious beneficial
effects in regards to health and aging, make it a paradigm of adaptive
response processes and finally mitohormesis (Radak et al. 2008, Radak et
al. 2005, Ji et al. 2006, Watson 2013). However, similar to physical inactiv-
ity, overtraining or excessive exercise represents the other end of the
hormesis curve as the adaption process is inhibited, leading to incom-
plete recovery (Chevion et al. 2003) and resulting in maladaptation and
possibly increased risk of diseases (Alessio et al. 1988).
To our knowledge, the first direct evidence that increased ROS pro-

duction following exercise may act as stimulus to activate mitochondria
biogenesis and mediates potential health-beneficial effects dates back to
1982 (Davies et al. 1982). An indirect clue was already given in 1971 with
an antioxidant, namely vitamin E, causing unfavorable effects on the
endurance performance of swimmers (Sharman et al. 1971). Since then,
a bulk of studies (in most cases inadvertently) proved the hypothesis that
ROS are required for the health-promoting effects of physical activity,
causing an increase in antioxidant defense mechanisms and with this,
prolong health span and mean lifespan (Crawford and Davies 1994,
Davies 1986, Kim et al. 1996, Marzatico et al. 1997, Balakrishnan and
Anuradha 1998, Ji et al. 2006, Powers and Lennon 1999, Niess et al. 1999,
Hollander et al. 2001, Higuchi et al. 1985, Gomez-Cabrera et al. 2008b,
Quintanilha 1984, Vincent et al. 1999, Boveris and Navarro 2008).
One of the main changes due to regular physical activity is the

increase in mitochondria energy metabolism. Exercise activates PGC-1α,
which is capable of controlling mitochondrial gene expression via NRF1
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and the mitochondrial transcription factor A (TFAM). This mediates
enhanced replication of mitochondrial DNA, leading to increased mito-
chondrial biogenesis and efficient muscle contraction (Nikolaidis and
Jamurtas 2009, Akimoto et al. 2005, Baar 2004, Arbogast and Reid 2004).
Furthermore, PGC-1 promotes the response to oxidative stress through
activation of NRF2 and induction of antioxidant enzyme expression (St.
Pierre et al. 2006). Another important point is the massive consumption
of ATP followed by an increase in AMP, which activates AMPK, leading
again to induction of PGC-1 and enhanced mitochondrial biogenesis
(Bergeron et al. 2001, Atherton et al. 2005). This increase in mitochon -
drial metabolism leads to enhanced oxygen consumption in muscle fibers
followed by lower intracellular oxygen tension during exercise, promot-
ing ROS generation (Franco et al. 1999, Puntschart et al. 1996). There are
also other so-called contraction-induced changes that stimulate ROS pro-
duction in muscle, for instance increased CO2 tension, decreased cellular
pH, and rise in muscle temperature (Arbogast and Reid 2004). The main
source of ROS during exercise is probably skeletal muscle (Davies et al.
1982, Powers and Jackson 2008), but other tissues such as heart, lungs,
and blood are also likely to be important contributors (Powers and
Jackson 2008, Nikolaidis and Jamurtas 2009). On cellular level, mtROS
were considered to be the predominant fraction of ROS produced dur-
ing physical activity over decades (Koren et al. 1983, Davies et al. 1982),
whereas recent research pointed out also important roles for nicotin -
amide adenine dinucleotide phosphate (NADPH) oxidase, phospholi-
pase A2, and xanthine oxidase (Powers et al. 2011).
ROS signals caused by a single bout of exercise only already activate

antioxidant defense enzymes like mitochondrial SOD and inducible
nitric oxide synthase (iNOS) (Hemmrich et al. 2003, Hollander et al.
2001). Regular exercise leads to proper adaptation to oxidative stress due
to upregulation of diverse SODs, catalase, HSPs, and glutathione peroxi-
dase (Powers and Lennon 1999, Leeuwenburgh and Heinecke 2001,
Franco et al. 1999, Puntschart et al. 1996). The second line of antioxidant
response which includes repair systems is important to minimize the dam-
aging effects of ROS and is also activated through regular physical activi-
ty (Crawford and Davies 1994, Davies 1986), assigning important roles for
proteasomal degradation and DNA repair enzymes (Radak et al. 2000,
Radak et al. 1999, Radak et al. 2003).
Correspondingly, there is convincing evidence that supplementation

of antioxidants is useless (Gey et al. 1970, Keren and Epstein 1980,
Maughan 1999, Theodorou et al. 2011, Yfanti et al. 2010) or even harmful
for athletes, potentially abolishing the beneficial effects on endurance
performance, immune status, muscle development, and prevention of
diseases (Gomez-Cabrera et al. 2008a, Strobel et al. 2011, Ristow et al.
2009, Marshall et al. 2002, Khassaf et al. 2003). For instance, athletes sup-
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plementing vitamin C and E did not display an induction of insulin sen-
sitivity and endogenous antioxidant defense regulators due to exercise as
seen in the control group (Ristow et al. 2009). It was shown that enhanced
mitochondrial biogenesis and with this, increased respiration and ROS
generation according to physical activity is prevented by co-treatment
with antioxidants, leading to the inhibition of the beneficial mito-
hormetic response (Gomez-Cabrera et al. 2008a, Strobel et al. 2011, Kang
et al. 2009, Fischer et al. 2006, Ristow et al. 2009). Furthermore, studies
proved the harmful effect of antioxidants in regards to performance as it
has shown to delay the recovery process (Close et al. 2006, Jackson 2008).
Hence, supplementation of antioxidants should not be recommended to
healthy athletes due to evidence that antioxidants have counter-produc-
tive effects on performance, health, and the onset of diseases.

13. OUTLOOK

All the above mentioned interventions are able to promote health-
and lifespan in a variety of model organisms via mitohormetic processes
(Figure 5). Future research will have to show whether these interventions
will be capable of slowing aging and prolonging health span also in
humans, in case it is not been shown yet. However, it seems unquestion-
able that the hypothesis of mitohormesis is, at least in parts, suitable to
explain how the aging process could be beneficially influenced. Of
course, mitohormesis cannot be considered in isolation to understand
aging, which is to describe unfortunately beyond the topic and space limi -
tations of this review. Notably, recent evidence suggests that stem cell
aging is linked to impaired ROS signaling, i.e. that low levels of ROS pro-
duction may prevent stem cell decline (Owusu-Ansah and Banerjee 2009,
Owusu-Ansah et al. 2008, Morimoto et al. 2013). Given the eminent role
of stem cell maintenance in the prevention of aging, it will be interesting
to see whether the emerging link to increased ROS levels can be expand-
ed. Secondly, ROS-mediated nitric oxide-signaling appears to be an
increasingly expanding field of mitochondrial biology and disease con-
trol (D’Antona et al. 2010, Nisoli et al. 2005). Moreover, processes like pro-
teostasis and mitochondrial UPR exert, while beyond the scope of this
review, significant links to ROS-dependent signaling events, suggesting an
overarching ROS-triggered mechanism in cellular and systemic quality
control (Taylor and Dillin 2013, Balch et al. 2008). Furthermore, it should
be emphasized that ROS signaling is a rather established mechanism in
plant biology research (Mittler et al. 2011), which could not possibly be
covered in the current review.
Related to the theory of mitohormesis is the Epigenetic oxidative redox

shift (EORS) theory of aging, proposing a metabolic shift away from the
use of mitochondrial energy towards reliance on glycolysis as a cause of
aging. This is due to epigenetic mediators influencing histone deacety-
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lases as well as histone acetylases and DNA methyltransferases (Brewer
2010, Ghosh et al. 2012). The shift in the oxidized direction of relevant
oxidants and reductants, such as cysteine/cystine or GSH/GSSG occurs
with aging and is initiated by low demands of mitochondrial produced
energy. The low energy demand is caused by low physical or mental activ-
ity, initiating a vicious cycle of oxidized signaling molecules, transcription
factors, membrane receptors, and epigenetic transcriptional regulators.
This results in the inability to respond to energy demands and stress, lead-
ing to typical age accompaniments like cell death and organ failure.
Notably, this EORS occurs upstream of the commonly observed increase
in ROS damage to macromolecules (Brewer 2010, Ghosh et al. 2012).
Another interesting approach which further extends the mitohorme-

sis concept is the Redox stress hypothesis of aging (Sohal and Orr 2012),
according to which ROS have essential functions in regulating protein
activity. The theory distinguishes between young and old organisms, pro-
posing that in the first part of life thiol redox potential is high, whereas
ROS generation is relatively low. In older organisms, ROS formation
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FIGURE 5. A non-exhaustive overview on lifespan-extending interventions linked to mitohormetic
ROS signaling. As outlined in the text of the current review, a number of apparently diverse inter-
ventions lead to a mitohormetic response mechanism, insinuating that distinct molecular pathways
culminate in a common mechanistic denominator by promoting a ROS-dependent stress response. 



increases, which would lead to a pro-oxidized shift in redox state and
overoxidation of thiols, resulting in loss of sensitivity and coordination
among the regulatory processes, a progressive decline of function and
finally death. Notably and like mitohormesis, the hypothesis relegates
cumulative damages through ROS and antioxidant defense to an auxil-
iary status, with little impact on altering redox-sensitive signaling (Sohal
and Orr 2012).
Taken together, mitohormesis unifies a significant number of lifes-

pan-regulating molecular pathways, and may, dependent on additional
scientific evidence, become a common denominator in aging research.
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